In this project, we aim to fill the gaps in the current 3D-printing technology to fabricate medical assistive devices with significant user benefit, well-being and availability. We develop methods to enable hybrid material and (spatial) full 3D-printing of optimized lightweight lattice structures. Additional functionality is added by embedding sensor and actuator concepts during the design process. The technological developments are accompanied by a continuous user-centered-design process to fabricate devices which meet user needs.